达内Android培训技术专家认为:以前在音乐做过一些实时投票,积分排名;单曲、专辑等排行榜;游戏中也有类似的战斗力排行;SNS的游戏又有好友排行等,对于此类的排行算法在此做个总结。
算法简单,利用sql的功能,不需要其他复杂逻辑,对于数据量比较少、性能要求不高,可以使用。但是对于海量数据,性能是无法接受的。
如有1百万用户进行排名,就用一个大小为1,000,000的数组表示积分和排名的对应关系,其中rank[s]表示积分s所对应的排名。初始化时,rank数组可以由user_score表在O(n)的复杂度内计算而来。用户排名的查询和更新基于这个数组来进行。查询积分s所对应的排名直接返回rank[s]即可,复杂度为O(1);当用户积分从s变为s+n,只需要把rank[s]到rank[s+n-1]这n个元素的值增加1即可,复杂度为O(n)。
以后,每次用户积分有变化所需要更新的区间数量和积分变化量有关系,积分变化越小更新的区间层次越低。总体上,每次所需要更新的区间数量是用户积分变量的log(n)级别的,也就是说如果用户积分一次变化在百万级,更新区间的数量在二十这个级别。在这种树形分区积分表的辅助下查询积分为s的用户排名,实际上是一个在区间树上由上至下、由粗到细一步步明确s所在的过程。比如,对于积分499,000,我们用一个初值为0的排名变量来做累加;首先,它属于1级区间的左子树[0, 500,000),那么该用户排名应该在右子树[500,000, 1,000,000)的用户数count之后,我们把该count值累加到该用户排名变量,进入下一级区间;其次,它属于3级区间的[250,000, 500,000),这是2级区间的右子树,所以不用累加count到排名变量,直接进入下一级区间;再次,它属于4级区间的…;直到最后我们把用户积分精确定位在21级区间[499,000, 499,001),整个累加过程完成,得出排名!
达内Android培训技术专家表示:虽然,本算法的更新和查询都涉及到若干个操作,但如果我们为区间的from_score和to_score建立索引,这些操作都是基于键的查询和更新,不会产生表扫描,因此效率更高。另外,本算法并不依赖于关系数据模型和SQL运算,可以轻易地为NoSQL等其他存储方式,而基于键的操作也很容易引入缓存机制进一步优化性能。进一步,我们可以估算一下树形区间的数目大约为2,000,000,考虑每个结点的大小,整个结构只占用几十M空间。所以,我们完全可以在内存建立区间树结构,并通过user_score表在O(n)的时间内初始化区间树,然后排名的查询和更新操作都可以在内存进行。一般来讲,同样的算法,从数据库到内存算法的性能提升常常可以达到10^5以上;因此,本算法可以达到非常高的性能。
优点:结构稳定,不受积分分布影响;每次查询或更新的复杂度为积分最大值的O(log(n))级别,且与用户规模无关,可以应对海量规模;不依赖于SQL,容易为NoSQL或内存数据结构。
达内Android培训技术专家认为:实现方案四的时候,发现代码比较复杂,调试起来特别不方便。游戏这边有个同事也实现了个,代码地址:
于是就想到的跳表,发现用这个实现起来比较简单;用hashmap来存储具体的对象;用skiplist用来排序。也可以简单的用一个map和set来实现。Map内面存具体对象,set用来排序。
关于skip list这里简单介绍下:skip list是链表的一种特殊形式,对链表的一种优化;INSERT和REMOVE操作是O(logn),而通用链表的复杂度为O(n);
后来看redis发现redis的zset天生是用来做排行榜的、好友列表,去重,历史记录等业务需求。接口使用非常简单。接口非常丰富,基本上需要的实现都能满足,说明如下:
达内Android培训技术专家认为:来实现排行榜的方法很多,可以根据自己的具体需求,参考选用。云南迷人湖
本文由 恒宇国际(www.neivn.cn)整理发布